Search results

Search for "vascular endothelial cells" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • vascular endothelial cells are at low frequency, and that the trans-endothelial pathways are the dominant mechanisms for nanoparticle extravasation in tumors (also called enhanced permeability and retention (EPR) effect) [37]. Since the skin has a denser structure than that of tumor vessels, we speculated
PDF
Album
Full Research Paper
Published 25 Apr 2024

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • considered one of the best materials with anticancer properties. Most of the administered NPs that end up in the bloodstream interact with the endothelial layer. The interaction of the NPs with the endothelium widens the existing gaps or induces new ones in the monolayer of vascular endothelial cells, thus
  • transcellular route, NPs enter endothelial cells through endocytosis and are transported intracellularly [24][27][28]. Recently, the existence of specific endothelial cells involved in the transport of NPs has been reported [29]. Kingston et al. demonstrated the presence of specific vascular endothelial cells
  • in solid tumors that are responsible for the transport of NPs by the transcellular route. They referred to these cells as NP-transporting endothelial cells (N-TECs). Their results suggest that only 21% of tumor vascular endothelial cells, unequally distributed along the blood vessels, participate in
PDF
Album
Review
Published 08 Mar 2023

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • potential interesting future studies. Keywords: fabrication methods; materials selection; nano- and micro-topography; vascular endothelial cells; vascular smooth muscle cells; Introduction Cells adhering to biomaterials are influenced by the surface topography, the surface chemistry and the mechanical
  • discusses model studies with a special emphasis on the fabrication of substrates with well-defined nano- and microstructured surfaces for in vitro studies with vascular cells (Figure 1). Vascular endothelial cells (ECs) and smooth muscle cells (SMCs) are two vascular cell types forming blood vessels (Figure
  • and regulated by an inner layer of vascular endothelial cells (ECs), and an outer layer of vascular smooth muscle cells (SMCs) (Figure 2) [167][168]. ECs are lining the inner part of the blood vessel (tunica intima), forming the so-called endothelium, and therefore they are in contact with the blood
PDF
Album
Review
Published 08 Nov 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • ]. Several modified NPs were also used in vascular-targeted therapy, which showed their way into endothelial cells and escape from the endosome in vitro [39]. Likewise, while iron oxide NPs are very helpful with their capability for imaging, their toxicity towards vascular endothelial cells cannot be ignored
  • cytotoxicity in human umbilical vascular endothelial cells and these effects are related to the activation of potassium channels [49]. Iron oxide NPs also induce inflammation and malfunction in vascular endothelial systems [50]. In the following, we will present assumptions about how the NPs behave in blood
  • endothelial cells to other kinds of endothelial cells. The hypothetical mechanism includes (1) the phosphorylation reaction of claudins, occludins and ZO proteins, (2) the relationship between oxidative stress and the expression level of claudins and occludins, and (3) shear stress (Figure 1). Figure 1 mainly
PDF
Album
Review
Published 06 May 2016

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • -inactivated fetal calf serum (FCS, Invitrogen, Germany). The immortalized human micro vascular endothelial cells (HMEC-1; Centers for Disease Control and Prevention, USA) were cultured in Gibco® MCDB 131 medium supplemented with 10% (v/v) FCS, 1% (v/v) GlutaMAXTM I (100×; Life Technologies GmbH, Germany), 1
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line
  • . In this section, we want to present in detail how Particle_in_Cell-3D was used to study the cell type-dependent uptake of 310 nm silica nanoparticles into human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). The nanoparticle uptake by single cells was
PDF
Album
Full Research Paper
Published 23 Sep 2014
Other Beilstein-Institut Open Science Activities